AFRL-IF-RS-TR-1999-241
Final Technical Report
November 1999

BRIDGING THE DEVELOPMENT GAP

Mercury Computer Systems, Inc.

Sponsored by
Advanced Research Projects Agency
DARPA Order No. D351

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AiR FORCE RESEARCH LABORATORY
. INFORMATION DIRECTORATE

20000118 056

ROME, NEW YORK

\
|
(D10 QUALITY INGFEOTED 1 JJ

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1999-241 has been reviewed and is approved for publication.

-

Ralph Kohler
Project Engineer

—

Northrup Fowler
Technical Advisor
Information Technology Division

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AF RL/IFTC 525 Brooks Road, Rome NY 13441-4505.
This will assist us in maintaining a. current mailing list.

Do not return copies of this report unless contractual obligations or notices on a spemﬁc
document require that it be returned,

BRIDGING THE DEVELOPMENT GAP

Craig Lund

Contractor: Mercury Computer Systems, Inc.

Contract Number: F30602-95-2-0037

Effective Date of Contract: 28 September 1995

Contract Expiration Date: 30 September 1997

Short Title of Work: Bridging the Development Gap
Period of Work Covered: Sep 95 - Sep 97

Principal Investigator: Craig Lund
Phone: (508) 256-1300
AFRL Project Engineer: ~ Ralph Kohler
Phone: (315) 330-2016

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Ralph Kohler, AFRL/IFTC, 525 Brooks Road, Rome, NY.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188

Putlic reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data neaded, and completing and reviewing
the collection of i Send regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Hsadquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY /Leave blank] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED _
NOVEMBER 1999 Final Seg 95 - Sep 97
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
BRIDGING THE DEVELOPMENT GAP C - F30602-95-2-0037
PE - 62301E
PR - D002
6. AGTHOR(S) TA - 01
Cralg Lund WU -P3
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Mercury Computer Systems, Inc. REPORT NUMBER
199 Riverneck Road

Chelmsford MA 01824-2820

[9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES] 10. SPONSORING/MONITORING
Defense Advanced Research Projects Agency Air Force Research Laboratory/IFTC| AGENCY REPORT NUMBER
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441-4505 AFRL-TF-RS-TR-1999-241

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer:Ralph Kohler/IFTC/(315) 330-2016

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT Maximum 200 words)

Bridging the Development Gap is contractual cooperative agreement between Mercury Computer Systems, Inc. and
DARPA. This program was developed because a software gap exists between the workstation-based research phase of a
signal processing project and the more contained prototyping phase. The transition requires a shift from a workstations rich
environment into an embedded system that typically offers only basic system software. The gap reflects more than just a
lack of software tools. It concerns new challenges such as: parallel decomposition, optimizing data transfer, heterogeneous
processing, interfacing with I/0 devices, memory constraints, as well as real-time throughput and latency challenges.

Mercury has bridged the indicated software gap by delivering on this program a deployment-focused environment for
algorithms created in a popular research language, MATLAB (and its companion SIMULINK). The project has had the full
cooperation of The Math Works, owner of MATLAB and SIMULINK. Mercury's discussions with Prime Contractors
building large, embedded systems had shown MATLAB to be nearly universal tool of choice within the research phase of
these projects. Demand for a MATLAB deployment path thus clearly existed.

The most significant element required to pull MATLAB and SIMULINK into parallel processing is to create a "mapping
tool” and an underlying "component” run-time system.

14, SUBJECT TERMS ' 15. NUMBER OF PAGES
Computer Network Security, Intrusion Detection 72
16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACY ABSTRACT
Unclassified Unclassified Unclassified UL

Standard Form 298 giev 2-89) {EG)
Prescribed by ANS! S
Designed using Perform Prn WHSIDIOR, Oct 94

[C]

Table of Contents

Executive Summary

Introduction

2.1 Application Markets of Interest

2.2 Importance of MATLAB

Bridging the Development Gap

3.1 Some Component Programming Concepts

3.2 Component Application Example

MATLAB on RACE

4.1 Talaris Environment for Component Programming
Application Performance
Summary and Future Research

Appendixes

Talaris—The application framework for scalable heterogeneous systems

(Presentation)

Talaris applied to Peakware product

(Mercury product announcement)

Further product developments towards MATLAB use

(Mercury product annoncement)

10
11

14

15

20

43

53

List of Tables

Table

1 ECAD analogy components for building electronics compared to multicomputing
component definitions
2 Summary of BAA95-19 results

ii

16

List of Figures

Figure

1
2
3
4
5
6
7
8

Life cycle of typical embedded application

Representation of Modules, Parts and Connections

Software model of a typical SAR application

Simple hardware configuration

Assignment from the software domain to the hardware domain
Scalable function created and assigned to multiple processors
Talaris environment as a framework for component programming

Function view of the Talaris Moduler environment

iii

O 00 0 N N

10
12
17

1.0 Executive Summary

This final report summarizes the results of cooperative research, that Mercury Computer
Systems, Inc. performed on the “Bridging the Development Gap” program. The program
was supported by the Defense Advanced Research Projects Agency (DARPA) under
BAA95-19, entitled “Programming and Runtime Environments and Operating Systems”.

The high-level program goals as described in Mercury$ original proposal were:

e Mercury intends to bridge the software gap between defense research, prototypes, and
deployment development stages. Developers who take advantage of Mercury$
proposed innovations can expect experience increased productivity resulting in better
solutions sooner, at lower cost.

e Mercury’ proposed component run-time system moves important functionality away
from programming tools and into system software (where the functionality belongs).
Mercury will work to make its run-time interface an open standard that is widely
supported by tool and embedded system vendors. Improved interoperability will
result.

o With improved interoperability, the overall embedded community will gain from a
larger collection of software tools, each supporting multiple hardware platforms.

e With improved interoperability, defense tool vendors can focus their limited resources
on building better tools, instead of porting into different operating systems.

e The underlying component programming model Mercury advocates promotes the re-

use of software modules and maintainability of large software projects.

A software gap exists between the workstation-based research phase of a signal
processing project and the more constrained prototyping phase. This transition requires a
shift from a workstation's rich environment into an embedded system that typically offers
only basic system software. The gap reflects more than just a lack of software tools. It
concerns new challenges such as: parallel decomposition, optimizing data transfer,
heterogeneous processing, interfacing with I/O devices, memory constraints, as well as

real-time throughput and latency challenges.

Mercury has bridged the indicated software gap by delivering on this program a
deployment-focused environment for algorithms created in a popular research language,
MATLARB (and its companion SIMULINK). The project has had the full cooperation of
The MathWorks, owner of MATLAB and SIMULINK. Mercury's discussions with
Prime Contractors building large, embedded systems had shown MATLAB to be a nearly
universal tool of choice within the research phase of these projects. Demand for a
MATLAB deployment path thus clearly existed. On their own, several primes had
already undertaken projects to provide rudimentary interfaces between Mercury's
embedded platform and MATLAB.

The most significant element required to pull MATLAB and SIMULINK into parallel
processing is to create a "mapping tool" and an underlying "component" run-time system.
Mercury has delivered functionality that is not specific to MATLAB nor SIMULINK, but
can be leveraged by other tool vendors. To help achieve this broad goal, Mercury and
The MathWorks have fully documented all interfaces. Mercury strongly believes that our
industry needs those open interfaces that facilitate interoperability between development

tools.

Mapping Tool.---Most of the efforts for this program focused on the Mapping Tool.

This is because today's SIMULINK cannot generate code for multiprocessor
environments. Our Mapping Tool pulls SIMULINK into the parallel world. SIMULINK
visually represents applications as a graph of interconnected functions in boxes connected

by lines. The lines represent data flow between functions.

Mercury's Mapping Tool enables manual assignment of functions to specific hardware
and assignment of interconnections to specific data transfer APIs. Proper mapping
(assignment) is critical to meeting embedded system performance and efficiency
requirements. To permit manual assignment, the Mapping Tool's graphical user interface
simultaneously shows a SIMULINK's logical "netlist" and the target hardware's physical
reality. Therefore, our Mapping Tool supports graphical specification of the physical

configuration of embedded systems.

Component Run-Time System.---Mercury has developed an underlying run-time system
that supports a component programming model. Such a run-time system prbcesses a
"netlist" which specifies the interconnection and processor assignments of software
modules available as object code. From the netlist, the run-time system synthesizes the
required executable images, loads the images into appropriate processors, sets up the

"interconnections” as inter-process communication objects, and begins execution of the

application.

The underlying "netlist" speciﬁcatibn is actually a scripting language. Specifically, we
have created a specialized Tool command language (Tcl) extension package that we call

ACL (Application Configuration Language).

Mercury's “Bridging the Development Gap” program started in August, 1995. At its own
expense, Mercury had already started work on a standard component runtime system
(Talaris, see Appendix A). Mercury had delivered review copies of a detailed Talaris

interface specification to several major software tool developers, including The Math

Works.

We have completed the software tools as proposed for the program in FY97. Our test
partners, MITRE, NUWC, and Integrated Sensors Inc., have validated anticipated
productivity benefits. The program ended in September 1997. Two other DARPA-

sponsored programs have build upon our results in FY98 and beyond.

Multiple commercialization programs exist, mostly at industry's expense. Spéctron
Microsystems has planned a commercial variant for their SPOX-MP operating system.
The component runtime system created under the program is now in commercial use by
the CapCASE visual development environment (see Appendix B) from Matra Cap
Systemes (France). UCB's Ptolemy group, led by Professor Edward Lee, is building our

runtime into Ptolemy in conjunction with new research into scaleable systems.

2.0 Introduction

This final report describes recent research and development work related to BAA95-19
that has significantly improved developer productivity for parallel programming of signal
processing applications today, while laying the groundwork for dramatic advances in the

future.

2.1 Application Markets of Interest

Mercury builds computers primarily for embedded applications that process live sensor

data. In the government electronics area, Mercury RACE® systems fit into radar, sonar,
and signal intelligence systems. For the diagnostic medical imaging market, Mercury
products connect directly to scanners for magnetic resonance imaging (MRI), computed
tomography (CT), positron emission tomography (PET), and digital X-ray. Emerging
application markets such as digital video and wireless communication processing are
expanding opportunities for multicomputers into areas that require increasing bandwidth

capacity.

These applications are also at the forefront of research. New sensors, new algorithms,
and new technology continually push what is possible, and more importantly for Mercury,
what is required from the computing environment. Our customers depend on ‘rapid
prototyping” and implementation — flowing results from research to product as quickly as
possible. The life4cycle stagesbo'fa typical embedded application are represented in

Figure 1.

Figure 1. Life cycle of typical embedded

application.

The cylinders in Figure 1 represent the steps a new algorithm typically goes through
between inspiration and volume deployment. We have labeled the steps ‘research,”
‘prototype,” and “deployment.” The prototype and deployment phases require a real-time
architecture capable of connecting directly to real-time streams of high-bandwidth data.
The deployment phase in particular runs on a real-time target, not on the host

workstation.

2.2 Importance of MATLAB

A survey of Mercury’ customers has shown that a significant majority of algorithms
deployed on our systems began their life cycle on a workstation- in the MATLAB®
programming environment from The MathWorks. This high-level tool enables the

researcher to conceive and explore algorithms easily.

The MathWorks has also added tools to the MATLAB product family to address the
transition from research to prototype. These tools include the MATLAB Compiler to
translate MATLAB M-files to C source; the MATLAB C Math Library for running that C
code independent of MATLAB itself; the SIMULINK® block-diagram environment for
simulating controls, signal processing, and other data-flow systems; and the Real-Time

Workshop for generating C code from SIMULINK models.

However, the gap to deployment remains. The MATLAB C Math Library runs on the
host, so it does not address deployed target-based implementations. Also, the

MathWorks tools do not address the issues of scaling to multicomputer targets.

3.0 Bridging the Development Gap

To bridge the gap from the research to real-time implementation, two things will have to
be done. First, the MATLAB C Math Library must be ported to the target environment.
Second, a mechanism must be created to define and implement a scalable solution. This
latter point will build on proven component programming concepts developed in other

markets.

While it is not necessary to use component programming techniques to leverage the
embedded MATLAB C Math Library, a few component programming basics are
presented in the next section, followed by a description of the embeddable RACE
MATLAB environment. This is followed by an overview of the component
programming infrastructure. Finally, we look at performance issues and future

developments.

3.1 Some Component Programming Concepts
In component programming, a software application is expressed as an interconnection of

software Modules that executes on a configuration of hardware Modules.

A software Module consists of executable code that operates on data and commands via
one or more Ports of the Modules. Interconnections of Ports between Modules are
Connections. Graphically, the relationships of Modules, Ports, and Connections are

shown in Figure 2.

Ports Connection

Figure 2. Representation of Modules, Ports and Connections

In the RACE implementation, Modules are POSIX threads or processes, Ports are various
types of protocols (e.g., message passing, synchronization, and shared-memory
application programming interfaces (APIs)), and Connections are objects that attach to

Ports.

Hardware Modules consist of processors and their memory systems, the interface to the
processor, and the connection of interfaces (e.g., connection to a shared bus or point-to-
point fabric). Component programming is analogous to the ECAD design principles of

Part, Pin, and Signal, as shown in Table 1.

Table 1. ECAD analogy components for building electronics compared to

multicomputing component definitions

ECAD Software System
Hardware
Part Module Processor
Pin Port Interface
Signal Connection Connection

Just as ASIC designers have leveraged reusable component methodology for rapidly
creating complex chips, multicomputing application developers will also reap
productivity gains by using methods and tools that leverage component technology. A
complete application consists of software components and their Connections, system
hardware components and their Connections, and the assignment (or mapping) of the
software components to the system hardware components. An example is given in the

next section.

3.2 Component Application Example

When thinking about a programming problem, a signal processing engineer usually draws
a block diagram like the one in Figure 3. For applications characterized by a series of
transformations, such as in a myriad of signal, image, and media processing applications,
sketches of the type in Figure 3 are the most ‘hatural” manner in which the application

engineer expresses the application.

In Figure 3, the blocks represent software components written in MATLAB, C, assembly
language, or whatever is most appropriate; the lines show Connections, or how Modules

communicate with shared memory and semaphores, and other techniques. The coders of

the individual software Modules can create reusable Modules without extensive
knowledge of the intricacies of the total application or the nuances of the target operating

system.

But note, Figure 3 shows only the software view and does not reflect any specifics of the

hardware upon which ultimately the algorithms will run.

Azimuth
Comprassion |

Compression [

Figure 3. A software model of a typical Synthetic Aperture Radar (SAR)

application shown as a collection of interconnected software modules.

In Mercury’ heterogeneous RACE architecture, target processors include 860,
PowerPC™ | and SHARC® DSPs. A small configuration appears in Figure 4.

Figure 4. A simple hardware configuration.

We can consider an inventory of Modules compiled for those processors as a set of

reusable software components.

In its simplest form, using component programming techniques for multicomputing is to
execute each of the software Modules in Figure 3 in parallel on the hardware in Figure 4.
Simply assign each block to its own processor, as in Figure 5. If this assignment does not
produce the desired throughput, then the engineer may decide to parallelize a single

Module across multiple processors (Figure 6) to improve the overall performance.

Software Damain

L Pulan
Conprosaion :

Vare

SHARC
CES

Figure 5. The illustration shows assignment from the software domain to the
hardware domain. The fill pattern indicates one example of how the software model

is assigned to the hardware model.

Software Domain

Biatia Al
Mipacking B

verr] Parometers B

Figure 6. In this example, a scalable function is created and assigned to multiple

processors to improve performance.

-

Mercury has created an environment that implements the thought process represented in
Figures 3 to 6, from specification through execution. This environment in part relies on
the Application Configuration Language (ACL). For ACL overview materials, reference,
and tutorial, seé:

e www.mc.com/talaris_fold/talariseet.html,

e www.mc.com/backgrounder folder/icassp/icassp.html,

e www.mc.com/talaris_fold/talaris/slide0.html.
But before we can describe the component programming environment, we will describe

how to turn MATLAB M-files into components.

4.0 MATLAB on RACE

The MathWorks and Mercury have collaborated to accomplish the task of porting the
MATLAB C Math Library to target embedded processors. A developer, using the
MATLAB compiler (mcc) and the RACE tool-chain, can compile an M-file to an object
file that is linked with the MATLAB C Math Library and other libraries. Since
MATLAB Modules can call C entry points, all of the APIs provided in RACE and by
third parties are available to the MATLAB developer.

10

Assuming that a “monolithic” M-file exists for an application, the following steps are

required to take advantage of the component programming tools for MATLAB:

1. The monolithic M-file is carefully studied and re-implemented as multiple
separate M-files that each represent a piece of useful processing. The M-files will
become individual software Modules.

2. Each M-file is compiléd with the MATLAB compiler to create a C code version.

3. An ACL template is created to describe the Port interface for each M-file. This is
typically a few lines, very similar to a C prototype declaration, that lists the input
and output Ports, plus any attributes and properties of each Port. Port types for the
first implementation are limited to MATLAB matrices and synchronization (via
semaphores). This step is easily accomplished with a text editor or can be semi-
automatically generated using the Inspector tool described below.

4. The ACL template files and the compiled M-files are input to a utility program
that creates a C code “Port wrapper” around each compiled M-file. The output of
the utility program is passed on to the C compiler to produce object files that
represent reusable MATLAB software Modules.

5. Typically, but not always, object files would be organized as libraries using a

standard archiving utility.

4.1 The Talaris Environment for Component Programming

A workstation hosts a collection of tools, the Talaris Modeler, and a variety of generators.
The output of a generator is a “Launch Kit” for a specific target platform. A Launch Kit
contains all the necessary image files and data to load, initialize, and execute the
application. A small Launcher program is required on the target platform to open a

Launch Kit, and perform the launching (load, initialize, and execute).

With this infrastructure, application development is equated to building a fully specified

and populated application model in the Talaris Modeler. A fully specified application

model contains:

e A system hardware model that expresses the instances of hardware Modules and
their interconnection.

* A software model that expresses the instances of software Modules and their

interconnection.

e The assignment of software Modules to hardware Modules.

A fully populated model means that object files (i.e., a “.0” file or library entry) exist for
each software Module (for the assigned hardware Module type) and the hardware exists.

Many useful development activities can be accomplished without a fully populated

model, but that is not a subject of this report.

Figure 7 represents the component programming infrastructure developed as a result of
Mercurys ongoing research and development efforts, with assistance from DARPA

(BAA95-19). This report provides an initial description of this environment.

WORKSTATION EMBEDDED TARGEY
- - -t C
Aesearcher/Oeveloper using |
I -
“ Campununt
l Libraries
ACL Interface % '
Mapper 4 § Launch AACE
g Tadarix Model Interface| | 2 Gen tor SPOX Launch SPOX
Anzpector 5 - 3 2
— é Talare . Gen for POSIX b Eaunch POSIK
SIMULINK 5 Modslor] Launch Pt [
E '§ Lunch. ..

1

Figure 7. Talaris environment as a framework for component programming.

12

Current tools in Figure 7, future tools, and the ACL are means by which the user builds
the model components. The tool substrate of Figure 7 is designed to allow simultaneous
interaction with the Talaris Modeler for multiple tools. The current tools are focused on
expressing the application model. We will discuss other types of tools in Section 6,
Summary and Future Research. A brief description of the current applibation model

expression methods is:

e The Inspector Tool--Inspector is a browser-like graphical user interface (GUI)
that shows all class types and instances of all Module types. Properties and
attributes of all objects can be inspected and modified. New Module types and

instances can be created with Inspector.

e The Mapper Tool--Mapper is a browser-like GUI that shows the various Talaris
domains and assignments between the domains. Domains are created, in part, to
facilitate the assignment problem of scalable applications. The current four
domains are software, process, target, and hardware. Individual software Modules
are first mapped into processes. Next, processes are mapped onto an idealized
hardware configuration (target domain). Last, the ideal hardware configuration is
mapped onto the actual hardware that a user hés available at that moment. The
reader is referred to the ACL references in Section 3.2. Mapper can be used to
make, modify, or view assignments. Making assignments across domains is done

with a “click-and-drag” interface.

e SIMULINK--For our current research, Mercury and The MathWorks used the
diagrammatic GUI of SIMULINK for ‘box-and-line” representation of software
and hardware models. The réader should note that this use of Simulink is strictly
as a drawing editor GUI and has no other functional relationship to The
MathWorks Simulink product. The user can create diagrams of software or
hardware models which are then translated to the Talaris Modeler. No
assignments are done in the SIMULINK GUI; typically, assignments are done
with Mapper.

13

® ACL--The Talaris Modeler contains an ACL interface for importing ACL
programs. ACL programs can express a complete or partial application model.
As with all the tools described here, the application model can be built
incrementally; in the ACL case, by importing a series of ACL programs. The
Talaris Modeler can also export ACL so that any changes done to the model can
be captured in ACL. Use of ACL by the application engineer is optional, and no
ACL knowledge is required to use the tools.

The Talaris Modeler offers completeness checks as the application model evolves. When
fully specified, assigned, and populated, the model is ready for kit generation. Currently a
generator exists for Mercury RACE systems, and the Spectron SPOX-MP operating
system environment. The other generators shown in Figure 7 are under consideration for

future work.

5.0 Application Performance

A goal of the Talaris component programming research is to maintain performance while
gaining the productivity and portability benefits of component methodology. The Talaris
Modeler does not add any runtime code nor perform any runtime orchestration of

Modules.

The Launcher does perform initialization sequences (e.g., initialization of interprocess
communication objects such as sockets, semaphores, and mapped memory areas) that are
not expressed in Modules but are derived from the application model and specified in the
Launch Kit. Such initialization actions are not considered part of the actual running

application.

Since these initialization sequences can be quite tedious, error-prone and vendor-specific
derived initialization is a significant productivity benefit of the component programming

approach. A Talaris Generator builds an executable as specified by the application

model. If the model expresses what the developer would normally do manually, then

execution time difference between manual methods and Talaris generation is nil.

Actual performance depends on:

1. The efficiency of the software Modules for each type of processor,
2. The implementation of the various Port and Connection types for the target

platform, and

3. The effectiveness of the software-to-hardware assignment.

The first issue is dependent on the writer of the software Module, and for high-level
language Modules, the quality of the compiler. The second dependency is the
responsibility of the platform vendor or possibly a third-party API implementation.
Finally, the last point above is currently in the realm of the application engineer who must

empirically or by other means develop an optimum assignment.

ACL and the current tools are present to help the developer build application models with
perhaps thousands of software Modules distributed across hundreds of processors. Future
research offers advancement for issues that go beyond application building to further

boost development productivity.

6.0 Summary and Future Research

Mercury has created an environment that implements the DSP and data-flow thought
process from specification through execution. A core modeling tool has been developed
with which other tools can interact. Application experts prefer this environment because

it matches how they were trained to think about signal processing problems.

Scaling an application from a small laboratory hardware configuration to a larger
deployed configuration can be simplified using this methodology. With this approach,
the Talaris Modeler infrastructure delivers its significant productivity benefits without

adding any appreciable performance overhead at runtime.

15

A summary of the results gained from our efforts on BAA95-19 is shown in Table 2.

Table 2. Summary of BAA95-19 results.

ACTIVITY

BEFORE BAA95-19

AFTER BAA95-19

Algorithm design and test

Reusable component design

Create software components

Connect components

Map software to hardware
Build

Run

MATLAB on workstation

Embedded in doc and code

Manual code development

Hand-coded variable names

Hand-coded initialization
Makefiles and shell scripts
Shell scripts and setup code

MATLAB on
workstation

Captured in ACL
MATLAB Compiler
Talaris Wrapper Tool
Talaris Inspector Tool
SIMULINK Config.
Toolbox

Talaris Mapper Tool
Talaris Generator

Talaris Launcher

Unlike visual tool developments of the past, the focus of this stage of the research was

applying component programming constructs to — and developing a modeler for —

multicomputing. The substrate that Mercury developed for Talaris uses component

programming as a way to build, maintain, and update a model of the application. Figure

8 illustrates the conceptual model of our activity today and possible future directions.

The modeler holds a dynamic model of an application so that various tools interact with

the model, sometimes simultaneously, to scan, modify, or annotate the model as an

application migrates from a functional specification to an optimized running application.

Future development might include simulation, performance analysis, automatic

assignment, and fault reconfiguration tools. As a simple example of interaction among

tools, consider an iterative cycle between an assignment tool and a performance analysis
tool. Given a running application, the performance analysis tool updates the model (that

is, modifies properties of Modules) with new performance metrics. The assignment tool

16

reads the new metrics and reassigns Modules for an improved optimization. Similar

interactions, through the application model, are anticipated for the other tools in Figure 8.

Productivity, Portability, Performance

Application
' Expression
cggg;:m A S Generatars/
& Components = = Mapper Launchers &
ponen Debugging Tools
L. Inspector
SIMULINK
Application
Performance ﬁ - Maodel Simulation
Analysis

Automatic
Assignment

Figure 8. A function view of the Talaris Modeler environment with future tool

examples.

The Talaris Modeler uses open, documented interfaces incorporating Java and the Tool
Command Language, Tcl, and is also platform-independent. Our plans include generators

for other computer architectures and integration of other types of advanced tools.

Our program has made significant contributions towards the objectives outlined within

BAA95-19 and has produced the following benefits:

17

e Resulted in a “parallel, embedded, heterogeneous, real-time” MATLAB and
bridged the software gap between research, prototypes, and deployment.
Developers who take advantage of our innovations will experience increased
productivity resulting in better time-to-solution at less cost (see Appendix C).

e Our component run-time system has moved important functionality away from
programming tools and into system software (where the functionality belongs).
We believe our run-time interface can become a standard that could be widely
supported by tool and embedded systefn vendors.

¢ Asaresult of improved interoperability, the overall embedded community gains
from a larger collection of software tools, each supporting multiple hardware
platforms.

e Asaresult of improved interoperability, tool vendors can focus their limited
resources on building better tools, instead of porting into different operating
systems.

¢ The underlying component programming model we advocate promotes the re-use
of software modules and maintainability of large software projects.

e Our documented interface descriptions can become the basis of an industry-wide

standardization effort.

The research performed on this program has sought to eliminate significant steps from the
development process used in most real-time, embedded, parallel processing projects.
Therefore, our partnership with DARPA and Rome Laboratory has contributed to the
United States’overall goal of maintaining a technological and competitive edge in the
world. Our partnership has done this by making it faster and easier to deploy high
performance computing technologies in typical embedded signal and image processing

applications.

RACE is a registered trademark of Mercury Computer Systems, Inc. PowerPC is a trademark of IBM Corp.
and SHARC is a trademark of Analog Devices Inc. Matlab and SIMULINK are registered trademarks of
The MathWorks, Inc. Other products may be trademarks or registered trademarks of their respective
holders. Mercury believes this information is accurate as of its publication date and is not résponsible for

any inadvertent errors.

18

[A]

[B]

Appendixes

Talaris— The application framework for scalable heterogeneous systems

(Presentation)

Talaris applied to Peakware product

(Mercury product announcement)

Further product developments towards MATLAB use

(Mercury product annoncement)

19

Appendix A.

Talaris— The application framework for

scalable heterogeneous systems

(Presentation)

20

b uomeweld uoneoyjddy suefe; ay| G661 ‘JoquanoN ‘0U] ‘'SWasAs sepndwon Ainosspy G6-b6610

DU ‘SUISAS LoInduioy Anoap

SUWII)SAS SNOIUISOIIIY dqe[eds
10J
Y romdurea] uonedddy aq .

SLADID [

21

2 omsuwel uoneolddy sueje| ayy G661 JOquIdNON "ouj ‘SWaysAS Jandwoy AInotspy G6-v661L0

JUBWISOAUI BY] YoM pue-
suoijesijdde [eas 10} a|qeIA ‘BqiSea) A|jeoiuyoa] ‘9)a4douod
suonesijdde xajdwoo ; abie] jo spaau jeloads ay}
a|qepod ‘ejgepuedxa ‘uado

siadojonap Aued-paiys o) Joadsaa yjm Aijesnau

S|00] pue siadojaAap JO Spadu Jualaylp ay)

S10)98J A

(s)wioped 4o} paziwndo pue papoo si Yoes ¢

salbojopoyjow ubisap pue suonesldde oioads sjebie) Yyoes
aAIsuadxa pue pazijelsads a(0} puaj} S|00] |[9Ad}-yBiy
«Pe3YI3N0,, S| }Sal 3y} ‘asemyos uoljesljdde J1oy) mouy siadojanap
9Annadwod aisow yonw ale suoneinbiyuos sy1ovads-uonesijdde
Aixajdwod osje Jnqg ‘saniunuuoddo mau Jajjo sain3oaliysie 0iajay
“*Butuuibaq ayj ysnf si Jamod Nndo mel pue azis wajsAs

MOWY] M JEYAM

SUODALISG()

22

£ uomswel uoneoyddy sueje] ayy G661 UaquisnoN "ouj ‘SWBlsAS Jopndwion AIndisy G6-466LO

‘(suonejsyiom / sjoo} Juswdojaaap ou) Juswhojdap Joddng *g

*sabueys uoneinbiyuod Jo punoseuan) jsej ajqeus 2

"9p0o uonezijeniul pue dnjas ayyioads-}ab.ie] |je ajeuiwl|y "9

| "S|dV J1199ds-walsAs jo Juspuadapul ureway g

‘lopow ubisap uonesijdde ue asodwi Juoq "y

"sjusuodwod wa)sAs snoauabouislay jo Buljess Joddng ¢
“Jauueuw jeinjeu pue ysu e ul Ajjesiwyjuobije

uoljewliojul ajeas pue ‘mojj ejep ‘Juawubisse ssaidx3g -z

"uoijewriojui uonesnBbyuod aleMyos pue aiempley azijesjuad ‘L

SISUR[eYD IYSIY YL
s[00) pue 3pdoad yjoq .a10j JIoMdwieay uoneddde ue apIAoL]

ajenbapeul Ajnjaom aie s)diios sjjays pue sajyayew
9P09 824N0S Ul 8¢ JOU P|NOYS uoljewriojul uoeinbyuod
dI0wAue 9p0d danos jsnf jou dae suonedddy

SUOISN]OUO)

23

¥ pomauel- uojeolddy suefe] ey G661 “4oqusnon "ouf ‘sweYsAS deyndwo) Ainoisy 66-p66L6O

suonesijdde Buiuuna sajeald
}Y yosune- e sydasoe
Aue ji |00} jays s1abie} ayy yym pajesbajul si
jobue] ay) uo sunu
UONNIIXI pue uonezijenIul - JdYdune| 3y I

JIY yosune-] e sajeald
asn aj1ayj 10} suononiisul pue syusauodwod asemyjos sydasoe
(7oVv) ebenbBue uoneinbyuos uonesiddy ayy sassasosd
UOIJe}SHIOM 3y} uo sunl

yudwdopasap uonedrjdde - x0jersuany ay .

Y1omawn,] woyndyddy stvjn [3\ I

24

G Jomauweld uojjeoyddy suee | eyl G661 UaquianoN ‘ou| ‘swa)sAg sendwor Aindisp G6-1661LO
ssaooud ssaoo.d ssa%04d
Jandwoosynwi
abie -
} } Y v i
1M yosune
LoREISIOM ._o m._w:o I %
juswdojonap } o
swelboud s9|npowl spuewwod
a|gejnoaxa ajqesnal 10V
sjualo sjduos slasn
|00} OV SAioEISiUl

SUIISASGN S SLIDID I

25

9 >omewe.i uojeoiddy sueje eyt

G661 “4aquianon “oUf 'SWeSAS seindwon Ainasop 66-p661L0

a|Npo Jesn e|npo Jesn
s|npoy\ Juaby 3|Npo Juaby

|

ssa%0l1d Jasn

[iavebier
PL
107
Jaindwoonnw Jayouney |
1ob.e) A
uoljeisyiom e e -
Juswidojanap > 191
> 10V
swelboid Py _
pojelausn) < M] |[&— Jojesauan)
(seyy abew; sjgenosxs) (so|1 103lgo) sSpuewiwos
sweiboud Jasn Sa|npon 10V

papundxsy - sua)sAsqng S [

26

/ pomsuwe.i uoneoiddy suee eyj G661 1aquionoN

"oul ‘SWaysAS sapndwion Aindiopy G6-66LO

a|npoW Jasn

sinpo Jasn

$8800.d Jos() a|npo\ uaby

3|NPO by

IdV 1961E]

PL
107

Jayoune-]

Juouwidoydaqq

SPUBLIWOD
1071 pUe jj8ys

[t youner

27

8 iomele.d uojesyddy suejet eyj G661 JoquanoN "0U| ‘SwajsAg sendwoy Ainoiap §6-r661L0
§j00j oij1oads-wioerd JNVS Buiuny pue Bngsp
dayoune] o} jeutsul e/u apo9o/siduos awn-uni Bngapy/sieslo
Jojeisus) Aq pauLiopsd e/ sa|qejnoaxs aziueb1o pue pjing
Sjuswubisse sayyoads sadojansp 10V sajgejnoaxa Buip|ing 1o} 9jjeyew ajeald
uasnlp-ejep si dnjes e/u uonepdwos 10} ajiyayew o} ppe
suonosUUoI saljioads Jadojorsp 1OV 9poo dnjos m:gm.v\&mm._.o
swisiueyoaw oususb asn ued saNpPoyy e/u S|dV dy10ads-wa)sAs ules)
8p09 pajidwoo sydsooe sueje| JNVS uonedwos 1o} ajiyeyew ajeald
uojjeolidde ey} uo snooj siadojorsp JAVS 8pod olj1vads-uonesiidde podsejeald

AHJOMINVYHL NOILVOITddY SIHVIVL

QOULILJI(T SIUVID] Y[

LN3INdOTIATA T¥NOILNIANOD

28

6 tomewel uojeoyddy suefel oyl G661 JOqUIBAON ‘ouy ‘swWaysAsS Jeyndwon Aindisp G6-¥6610

¢Hd W Zd WlllEm._mo._n_
EHA _
LHd [€— id € sinpow [od
¢ (764] s
ZHA | — ;
‘ a|npo [#o4 H
_ LHA [= 110d | w
c—n—m < _ . u._On_‘l— u
OHA [«——— od [¢ aINPON [Foa 0
1i6d °
alempie alempleH 5509014 S1EMJI0S

jedisAyd Jenpip

[opo uoyvoiddy 2y |

29

0L omswes uogeoyddy suee) ayj G661 Uaquenon "ouj ‘swe)sAs sendwion Ainoss 6-v6616

uonebasbbe sojdwi Juswubissy

diys ued ‘sujewoq SSoIoe paubisse ale syusuodwion
uoneinblyuod asempaey [enjoe ayy :STEMpIey [e3ISAUg
uoneinbyjuod asempiey jeapl ay) :STEMPIEY JENHIA
weuboud e 10 sa|npows Jo U009 k :SS350Ig
swelboid Aaeba] 10 sa|npoy ajqesnas :3TeMIJos

JUIWIUSISSY PUB SUIBWO(]

sjoalgo pabpay-jin} ale ¢
uoljeziuoiyouAs ‘Gulieys ejep ‘Jsjsuel; eyep ¢
"SHod,sjuauodwo) sayjo o} sAemyjed apinoad suoldauuo)
fowsaw paieys ‘Jexoos ‘aloydewss ¢
sjusuodwo? JaYyjo 0} saoepialul ale SHog
alempiey pue aJjem)jos ¢

30

papaau se pazisayjuhs aise ‘Buissesold wioyad Sjustoduio)
sennuy

S1daouo) sisng

Ll pomewelq uopeoiddy sueje) ayj G66L JoquaroN "ou| ‘sWwajsAS sendwon Ainatoy ¢6-66L0

uonesijdde ayj 3oadsul AjoA13oeiajul
Buissadsosd puewwos Gurinp Bujosayos-10.11a siseq

J10)e19Udx) 91} ojul 3dLIdS THV Y} peo]

sjusawubisse Ajioads
sjo9lqo atemp.eH jeaisAyd pue jenliA ayj ajeald
papoaau JI S9SS820.1d d)eald
SLO0d,S9|NPOJA 9y} }o2Uuod
s)o9alqo wesbold pue ajnpoy ajeald
1drids 7Hv ue ur uonpedrpdde ayy aqrIdsa(q

sobew ajqeInsaxa pajeald Ajojesedas :sweiboad 1asn
[opow ajnpojy sueje] ayj o3 Buiwiojuod :sanpo 19sn
sjuduodurod daeM}J0s Jo A10judAul 3Y) dopdad(q

uonyndnddy ayyp aquridsaq ;1 dagg

31

2L >pomawe. uoneslddy suee] oyy G661 JaquieroN “ouyf ‘swejsAs Jeindwion AInoIeN G6-r66LO

(Jojessusg) ay) Aq pajeald Jou) sweiboid Josn ¢
(ss|npoy Jusby pue sesn woy apew) swelbold pajessues) +
1o} sabeuw ajqejnosaxs
9|14 uoneinbyuon yosune-
] youne|ayg,

9]14 uonjeanbyuoo ysune ayj sajeald
a[nNpoy Juaby pue ss|npoyy J9s woly swelbold pajesauss) sajeals
suoljoauuod Bujzijeniug 1oy uepd e sasinap
uoijepijeA jeuonyippe suuouad
sjuawubisse sazijeuly
uonesijdde ay) sazAjeue
J10)BIUIN) Y I,

I Younv'y ayp n4ousx) ;7 dapg

32

€1 Homewel uonesiiddy suefe) ey G661 “4equianonN "oU| ‘sWaysAs Jayndwon Ainaisp G6-r66L0

Jayoune- Aq pajoalip usym sa|npoy ay3 suels
Jayoune 0} yoeq suodal ‘una 0} Apeals sanpoyy sieb
S,0dl [e20] sozijel}iul pue sajeald
Jojelauac) ayj Aq pajeatd ejep sasn

JWI-UNI)k JuISY Y I,

juiod Anjua ()urew ayj sapinoad
swielboid pajelauan) 10j sabewl ajqeinosaxa ayj ojul payul|
}Jomauwied) ay} Yym papiaotd ajnpoyy je1oads e

A[MPOJA] JUABY Y],

sassa2%04d sumeds ‘sabeuwl speoj

§0dl leqo|b dn sjas

3d119s youne| ay) S9)n29Xa pue SjoeaIxd
IM yosune- ayj sozAjeue

Jayoune| Y[,

uoywonddy ayy younny :¢ doyg «

33

vl omawel uoneolddy suee; ay G661 JaquanoN "ouf ‘swesAg ssindwo) Ainaisy G6-¥6610

und ‘uels ‘dnjas ‘peoj ‘ajesausb jonuo?
Aionb uonew.oyur

JO9UUOISIP ‘}99UU0D SUO0I}IBUUOD
ubisseap ‘ubisse sjuawubisse

9|eos }9b ‘ajeoas)os buijeas

fApadoud a3ejap ‘Altadoid™yab ‘Ajedosdjas sarpadosd
9)ojop ‘ajeald saaouejsui

9)ajap ‘adA})96 ‘asejoop sodA)

spuewwiod)V

uoneinbyuos uoyesijdde Juarns ayj Jo Asenb aanoessjus spoddns
)oeqpas} pue Bunjoays Josis ajeipawiwl sapinosd

Spuewwod uoisualxa ,Joadxa,, ay) sajelrodiooul

spuewwod |91 ,ouduab,, - 18jaidiajul |9] piepuels ayj SpusaIxa

19321duRd)ur THV $10)LIdUIL) YT,

dSVNS UnJ uonnin Mm\& 0) QQ.QGQ.QQ&WY &

Gl omewel- uopeslddy sueje| eyl G661 JaqUIBaAON "ou] ‘swia)sAs sepndwon Aindisy G6-F6610

aoeJ) ‘adxa ‘0axa ‘JeAd ‘yojes ‘snd Tot

uinjaa ‘oouad suonouny

jewlo} ‘puadde ‘yds ‘ulof ‘Buinys sbulns

jesuod ‘asejday] ‘xapuij ‘yibuaj| ‘puadde| ‘Isy| s}sl|
JIXD ‘9JIYyM ‘Yyoeauoy ‘10} ‘Ji jol3uood

AUd ‘ABue ‘1oul ‘(A)x¢ ‘Aeste ‘x¢ ‘}os sajqelLieA

(3s1] en3aed) spuswImIod P I,

a|qeun) ‘a|geppaqud ‘jjews :|1d9d "SA
pajualIo }S1j/3X3] ‘91qIsudlxa ‘a|qeyod :sjjays XINN "SA
a|qe|ieAe s)00(‘pajuswindop AjoAISudlxa ‘uled] o) Ases

(L U0 paseq Ay

ISVNSUDT pUnuLo)) 100

35

9L >Homewel uojeoiddy suefe] oy G661 JsquanoN "0U] ‘SWaisAS Jendwio) Aindiop G6-+6640

"SUTT 3seT] 0T €
"SUTT IdYylouy €T Z
*OUTT 3ISIATJ 1T T
e3eq yazbusg QUTT

G66T ILAd LP:GG:ZT 0T des ung :ajeq
8TTy-oTdwes-e/dwy/ :oTTd
STT3-oT7dwes-e/dwy/ STTF-3ISTT &

°

OH..HMW 9S0TO
{
ISqUNNSUTT IDUT
wRUTTS$I\ [SUTT$ yabusT butais]i\asqunNsuTTs, sand
SUTT PISTTI$ s3sb
b { [pPI®TTI$ JOo] | } OTTum
wu\Blegi\yibusgi\surti, sind
wU\®31Bp¢§ :83equ\aTTi$:97T4u\, s3ind
T I2qUWNNDUTT 13198
[#@T1T3¢$ usdo] pISTTF 3I8S
} abaeg o1TF yoesazog
[®3ep Doxo] o3ep 189S

a1dwnxrg 101

36

Z1 omaweli4 uojesiddy suere] ayj

G661 1oqueroN ‘0u| ‘SWwajsAs saindwor Ainois 66-P661L0

IOB-SOTSUTIJUT

sad £y srsuLnur Auewt sourjdpaxd THV

{1no quWS UT qWS 1IN0 DUAS WSS UT OUAS weS} LJid ©INPOW 9IBTO=2P

PUBWIWIO) AIB[IIP,, YIIM PIALIIP 18 SAdA) MIN

sadd] 1OV

JNIqQ,, 3d4) aseq ayy aaey sadAy IV

padA) aae $333[qo ||V

37

8l lomswei uonesyddy suewe) ayj

664 ‘UaquianoN

‘0U] ‘SWaSAS sapndwio) Lindisiy G6-v66L0O

UOT3ID8UUOD oTpueH
UOTIOdUUOD IBIUTOJ

38

0dd @D

UOTIDBUUOD BTgnoQ °TT4 DYYHS =D

UOTIOBUUOD 1BOTJ °Tpuey 098 4D
uoTlo8UU0) buoTq A93UTod TIYMAUVH 3D
UOT1D2UUOD AUY sTqnod dsa 4o
UuoT3I0dUU0) AbIy JeoTd JSTY 4D
UOT309UUOD qus XTSOd buot 19
UOT3D2UU0) DS XTSog AUY ssao01g
uotl1o9uuo) axoydewss XTSod abay JUTS eaeq
UOTID9UUOD X Jutodpumxd 20IN0g BIE(Q

UOT3ID2UUOD qusS SODN qus weiborg urten

UOT3D8UUO0D 13194005 SOINW 00§ wexboaxg

uot3oauuoc) saxoydewas SOIW uag STNPON
UuoT102UUO) 3104 jusuoduo)
308(qo

(1517 jp1pavd) sadA| o1surpuy

6L Miomeweld uojeonddy suejel ey G661 “4oquianoN "ouj ‘SWaeysAS Jepndwon Aindusy 6646610

20BJI93UT 031~ 3ndul ubTsse

1.7 PI®D- <U$>S9DBIIDIUT 90RIIDIUIIRPRY 23183ID

gW9T AIowsw- 20eJIDJUTIECPRY (098 HAD SIBTOSDP

<ug>3andut 3nduiiepey 93e9ID

ut xepea/sotdwexa/* oT13- andurxepey weiboxg oIeTO9P
p U 19s

paugisse aq ued §)93[qo paed’s

<p9>pus-3uoaj (98 ID ©31ESID
<8>0TT2Yy weaboig s3eaad

(pareas-aa pue) pafeds 3q ued $3NIqQ

oTToy weaiboad o3e8ID

§393fqo sddnpoad djean,,

$192[90 TOV

39

02 iomawel uoesyddy suee) sy G661 JoquanoN o] ‘SWajsAS dandwiod Ainossy G6-r6610

uT-Iossaxdwodo 3no-3nduTr 302UU0D jno

XUuT"10ssaxdwoo x3ino*3nduTr 109UUOD Ea

‘_ommm.&anI

ur]
Tossaxdwoo xossaxdwonsweli 93B3ID o)

{3noc qus x3no weg ut quws XUuT was} Jossaadwodowexy STNPOW SIBTDSP
no |
andut 3ndurswerj 931BSID ndul ,
{3no qus x3no wes} jndulswely STNPON SIeTOOP Xno |
TOV Ul S3[NPOJA Suls()

anjeA uinjal ay) uo spuadap jjes Juanbasqns
dn jas Apeadje ale swisiueysaw 9d|
Jadojanapiaubisap ayj 03 dn si Ajuenue.b
PeadJy] UMO S}1 Ul suns 3NPO yoea
Buissasoid pue saoepajul paulyap-jjom

yiun [euonoduny [ed3of e Ajdwirs :3npoyy

40

12 iomewel uoneoyddy suejey ey G661 “YoquianonN "oUj ‘SWasAS Janduwio) Lindioy G6-r66L6

(e,) @aAlyate ul pasejd Ajjeuondo ‘pajidwod

I1e Je }1 ‘sajqeldeA jeqojb jJo asn |njated

juejuaal

T1H pauoddns 18yjo 10 9 ul uajjlim
uoneyumwWIduwi NpoIN

IdV wajsAs
Bunelado aaneu ayy ypm sjqesn Apoaaip ale siajoweded pod

S10}93A 10 8|buls -- sJo0d 0} puodsaliod siajaweled uonouny
7OV ul paquoasap si aunjeubis uoiouny
suonuaAuod buijes o

yurod ANud INPoOA

IMMPO] D SUIUSISI(]

41

A4

22 lomewel uoneoyddy suepe] ey G661 “4oguwanonN "ouj ‘swaysAs sendwon Ainossiy G6-F66L0O

o 3ndut a1TtI- 3ndur 3ndurswexy S31e310

abesn uonesddy

{3no qug x3no wsag} Indurswead STNPOW Ehichgelsiel

uonduosaqg
o+ andut sweaJ o- 00
uonejdwon
{
/x ATSNONUTI3UOD TTBD 03 MO »/ ‘{0 uanaex
/ x ,¥X3n0, axoydewsas oaTb ,/
/% ,300, 03 90TA®p woiJ 3ndur IDISURII x/

}
(3no quws 1 ‘x3no wes 1) 3ndur 3ut
L~U STIRTRY, OPNTOUTH

o9'Jndur awelj :921n0g

AINPOA D SUIS/) pU» SUIPO)

42

£2 uomauwielq uoneoyddy sueje) oyl G661 JoqUIBAON ‘ou| ‘swe)sAs sepndwon Aindiapy G6-p66LG

s9INpPo Jo A1jud saziuodyosuAs
juiod Anyua a|npo yoea 03 jjes ayj dn s)as
9|NPOIAl Yoes 10} peady) e sajeald
S,9dl |e20] sazijeniul pue sajeald
(1ayoune ayj Aq pajeautd) 3diios Juaby s} sapooap
weibold pajesauds) ayj 10} (Jurew ayj si

JMMPOJAl JUISY YL,

)4oMm [|13s ssabBBngap 92inos ‘pansasald ase sjoquiis @ saweu uoiouny
- dINPO Yyoes 1o} apod ay} jo Adoo auo

papoau se sassad0.1d S9jeald Ajjesnewolne 10jelauacs) ayj
uoljebaibbe anpoy ul sjinsas Juswubissy

(S)OMPOJA] 13S() + I[NPOJA] JUITY = WBIZ01J PILIdUIL)

SUIDAISO0LJ PIIDLIOUIL)

43

vZ somewei uoyeoyddy suee) oyl G661 J8qUIBAON “0U| ‘swajsAg sopndwoy Ainossp G6-+6610

SWRIS0.IJ PIIBIIUIL) puL sweadord J9s() Xiu udjyo suonedddy

A031RIUIL) Y} A III] Youne | Iy} ul papnpuj

andano ospTa 03- AeydsTIp ubrsse
LT PTeO- 3nd3ino ospTA DSIY @D ©388ID
{oTxpPb 216 d- Z p-} sbae- AerdsTp weaboig uTel 931D

WAY) un.i pue udisse 0) pasn [[13s st THV

SI[LINIIXI SUIISIXI I8 SWRIF0LJ J3S()

SWUDAG04J 12S))

44

Gz omoawrel uojeolddy suee] oyj G661 ‘1oquanoN "oUf 'SWajsAS s8indwio Ainois G6-y66L0

s$]00} Juswabeuew uoneINBUOD YJIM SHIOM

Jayosune-] uaAlp-ejep e Aq punoieuin} }21nd
m_oou, Bunsixa yum Bngaq

paJojie} si a|qeinosaxa pajessusb yoez

| joedwi asuewopuad awi-uni oN
uonesijdde ay} o} pappe si 9po3 pajessaushb oN -

S|dV Wa)sAs aAljeu asn ued sa|npoy

pa240j jJou si yoeoadde ajnpo 8y} jo :ozgove.

joe3ul s1 ubissp uonesijdde jeinjeu ayyL

s)diLIos ‘sajiyoqew ‘apod dnjas ssa| - sued Buirow Jamad,,

$12d0]242(J 10.]

45

92 omawel4 uonesiddy suee] ey G661 YoquIanoN "0U| ‘SWasAS sepndwon Ainoisyy G6-y66L0

snooy ubisap / uonesijdde anbiun s)1 deay ues sjooj yoseg

anjeA pappe 119y} uo snooj ued siadojaaap |00

abel1ans] atow sjoo) aalb suuojeld sjdiinpy

Juswdojanap |00} UMOP MO|S Jey) sjiejap dl1oads-wa)sAs Joma-

JUBWIUOIIAUD diem)os wd)sAs A|pusliy-|00},, ¥

" 'SQUI1) 100 10

46

12 uomewel uojeolddy suefe] ey} G661 JOqUIBAON "oU| ‘SWa)sAS s9indwio?) Aindis G6-+661L0

(sejeroossy @ Aj19140) saqi] uoq - Joadx3 buuojdx3,,
(I1eH @onuaad) Yoo Juaig - A1 pue |91 ul Bujwwelboid |eonoeld,,
(Aajsam uosippy) InoylasnQ uyor - J}j0oL Y1 8y} pue |21,

suolosuuoD Bulnjosal uolezijeul sweu Jod
SUOI}OBUUOD SSB|o|EeDS Sa0UaIajal pue siauiuapl

abenbue] uoneinbiuo) youne SpuBWWOD dyi0ads-wa)sAs
SJUSJUOD Y youne Jojelauas) ay} BuLnbyuod

aseqejep 1OV 8y} 0} seoeuaiul O sojnguUy pue saiuadold
se|npow a|qe[ess-al Buium younejal / pjingal paziwndo
ajeos Buibueyo suolPauu09 ‘sjuswiubisse Jo opun

uonelnbyuoos ayy jo Alenb SHod pa|eoss

-ou] ‘swia)sAg Ja3ndwon Ainasay - uonedyidads 1oV,

uoyvuLiofuf pu sordoy soypng-

47

Appendix B.

Talaris applied to Peakware product

(Mercury product announcement)

48

Peak Ware

for RACE®

Create Deployable
Application Code
for Embedded
Multicomputer Systems

Reduce Software
Application
Life-Cycle Cost

Comprehensive,
Component-Based

YSERIES

ace,

A

Development Environment

PR 4 Deﬁne Data Flow

PeakWare for RACE, by Mercury
Computer Systems, Inc., refines the

concept of stream computing by

applying to it the most productive
application development interface in
the industry. It is a fully graphical tool
for designing and deploying applica-
tions for the RACE multicomputing envi-
ronment. PeakWare for RACE employs a
building-block process that provides a log-
ical, intuitive development environment
familiar to anyone who has ever sketched

out a system design on a white board.

With PeakWare for RACE, programmers
can develop signal processing applications
without having to rewrite existing, proven
algorithms, and configure hardware com-
ponents without worrying about whether
different processors will communicate with
the software. PeakWare for RACE's visual
representation of application data flow lets
users access distinct software domains,
hardware configurations, and mapping of
software modules to hardware modules
through simple, efficient graphical repre-
sentations. Using PeakWare for RACE,

49

MERG;
7
¢

The Component Programming Development
Environment for Embedded Applications

programmers can change hardware
resources and configurations without having
to rewrite source code. With its simple
point-and-click functionality, code is generat-
ed, applications are created, and easy-to-fol-

low graphical documentation gets produced.

Peak Ware for RACE

An intuitive graphical user interface (GUI)
enables application developers to depict
software modules and the intended connec-
tion between the modules and target
processors. PeakWare for RACE allows
the user to easily map software modules to
target hardware, providing an unprecedent-
ed level of productivity and portability

without hampering performance.

Productivity

With PeakWare for RACE, software and
hardware domains remain uniformly dis-
tinct, allowing different hardware configu-
rations to be used without requiring
changes to the source code. With software

components that are wholly independent

of the hardware configuration, due to

automatic source code generation for configuration-
dependent communications code, application developers
can seamlessly upgrade processors or insert new technology.
Engineering productivity is dramatically improved, and
time-to-market is substantially reduced as developers can
spend less time rewriting code and more time streamlining

a system for optimal performance.

PeakWare for RACE contains extensive turnkey code
libraries, and also allows developers to easily incorporate
their own code, either in source code format or through
a feature called Opaque Modules in compiled {object)
format. Because this innovative tool keeps functional
code separate from platform-specific code, it facilitates

software reuse.

Portability

PeakWare for RACE allows developers to use different
hardware maps for any combination of processors that
may already exist within a RACE multicomputer system.
Furthermore, application code can be targeted at differ-
ent system and backplane architectures. With PeakWare
for RACEs ability to mix high-performance processors
such as the PowerPC™, SHARC®, and i860 in heteroge-
neous multicomputer configurations, developers can test
how well their individual algorithms, as well as complete
applications, work in each case in order to create the

optimal performance match.

Performance

PeakWare for RACE was created from the ground up to
reduce development costs and time-to-market, and is the
only development tool that generates full-performance,
production-ready, deployable code that is ready to run on
targeted configurations. Speed, accuracy, and ease of use
have been key criteria for this tool every step of the way,
making PeakWare for RACE a true competitive advantage.

With PeakWare for RACE, a developer graphically
creates an application in three parts. The first element,
software design, allows the developer to define the inter-
connection of software components. In the next phase,

the RACE system hardware configuration is graphically

defined. Finally, the developer maps the interconnection

design to the target hardware platform.

Software Design

For pure software design, developers use the PeakWare

for RACE GUI to establish data-flow communications

Software

between various software modules and their related proto-
cols. The software graph enables programmers to create a
graphical representation of the application they are devel-
oping. Programmers have access to six main graphical
operations: selecting the design options, inserting the mod-
ule component in the graph, defining the module contents,
inserting the function in the module graph, defining the
function, and saving the software graph.

The software graph handles only information about soft-
ware processes and communication declarations. For the
software part of the specification, the developer needs

minimal knowledge of the target hardware.

Because the software graph’s basic building block is a
function, users can either create their own functions or
manipulate those provided with PeakWare for RACE.

Either can be retrieved from libraries within the application.

Another key component in the software design is a mod-
ule. A module is always implemented as a process or a
thread (task) and is composed of a function or a set of
functions. PeakWare for RACE offers a graphical module

editor to describe the internal structure of modules, func-
tions, and data exchanged between functions. At this
level, the application developer can interconnect modules
either directly or using a connection such as shared memo-

ry buffers, sockets, or semaphores.

PeakWare for RACE allows an application developer to
easily create modules and their links. The ports by which
a module interconnects to other modules are defined using
the GUI to select a port type from those types supported
{e.g., shared memory with DMA access, or socket, etc.).
Each software graphical object (module, connection, or
function) has a description window, depending on the object

type, which lets the developer override default settings.

The application developer can also edit graphical objects
and move through the software module’s hierarchy.
PeakWare for RACE provides Top, Down, and Up but-
tons and navigation menu options as well as a hierarchy
display window for users to navigate through the module’s

hierarchy and contents.

A scaling factor can be applied to software modules and
other graphical objects to generate a specific number of
fully intercommunicating and synchronized source code
instantiations. For example, scaling a module to 32
results in source code generation for communication and
synchronization of the 32 instances of the module.
Regardless of the amount of scaling, the code structure of
the module is compiled once in PeakWare for RACE’s
library. A software description field gives programmers a
place to define custom functions or annotate PeakWare
for RACE functions.

Hardware

In keeping with the ease of component programming,
PeakWare for RACE gives developers six main functions
for GUI-based hardware system definition: creating the
graph components, defining the hardware configurations,
defining the data links, linking the components, specifying
the application host or the targeted hardware, and saving
the hardware graph. With these functions, application
developers graphically describe the RACE multicomputer
configuration that is available or needed to accommodate
the real-time performance requirements of the application

software.

The target configuration can be graphically displayed,
modified (e.g., adding a hardware board), or created from
elementary, predefined hardware components, such as
specific boards (RACE family of high-end signal process-
ing boards or SPARC Unix host boards) and interconnects
(RACEway crossbar or VMEbus). PeakWare for RACE’s
turnkey library of hardware components ranges from the
simple to the complex. In addition, developers can add
their own graphically defined hardware configurations to
the library. Furthermore, PeakWare for RACE gives pro-
grammers a simple, flexible, and efficient way to test
hardware components by allowing changes in hardware
configurations — even adding or subtracting processors —

without rewriting or editing source code.

Mapping
Once the software and hardware are defined, the devel-

oper can control the way the application is mapped onto

“tor RACH - Hardwars Descristisn

the target hardware. This allows the developer to

fine-tune the system’s performance. The block

\

TRTTTTTR T

(i

il

i
i

diagram, data-flow design metaphor extends to PeakWare
for RACE’s mapping capabilities, allowing users to assign
particular software modules to specific processors or other
pieces of hardware. The developer can map modules onto
processors with the Mapping operation, and produce
information that is then used by the Code Generator.

Each module results in a thread at run time. With the
Mapping window, the developer can override the default
mapping of modules (threads) into processes, or the
default mapping of virtual hardware onto physical proces-
sors. A single software module may be assigned to one
or more processors, or many software modules to one
processor. This feature encourages the programmer to
focus on streamlining for deployable application perfor-
mance, and eliminates the worry of software and hard-

ware communication.

In Partnership

PeakWare for RACE is the result of collaboration
between Mercury Computer Systems and MATRA
SYSTEMES & INFORMATION (Matra MS&), a

France-based industry leader in the development and inte-

gration of high-performance computing solutions.

SYSTEMES & INFORMATION

RACE and the RACE logo are registered trademarks, and MC/OS and Talaris are trademarks of Mercury Computer Systems,
Inc. PeakWare is a trademark of MATRA SYSTEMS & INFORMATION, PowerPC is a trademark of IBM Corp., and SHARC is
a registered trademark of Analog Devices Inc. Other products i

d may be trad ks or regi

System Requirements
Development Host

* SPARC system running Solaris™ 2.4 or 2.5
* Must have X display terminal capability

(color recommended)
* 75 MB for complete on-line help with screen dumps

* 16 MB memory minimum (32 MB recommended)

Runtime Host

* Any Mercury-supported runtime host

Mercury Hardware/Software
*» MC/OS Development and Runtime Environment
Version 4.3 and later

¢ SHARC:-, PowerPC-, or i860-based system with

minimum 8 MB memory per node

Shipping Media
* 1/4 inch QIC-150 tape, pkgadd format

¢ 8 mm tape, pkgadd format

Computer Systems, Inc.
MERCURY
The Ultimate Performance Machine

199 Rivemeck Road

Chelmsford, MA 01824-2820 US.A.
978-256-1300 + Fax 978-256-3599
800-229-2006 * http://www.mc.com
NASDAQ; MRCY

d trad ks of

A A A A AR A AT

their resp
change without notice. Copyright © 1998 Mercury Computer Systems, Inc.

52

holders. Mercury believes this information is accurate as of its publication date and is not responsible for any inadvertent errors. The information contained herein is subject to

Ds-5U-10

Appendix C.

Further product developments towards

MATLAB use

(Mercury product announcement)

53

Developers of demanding sig-
nal processing applications
often face the challenge of
implementing a prototype
from software which origi-
nated during the research
of an idea or concept.
For many organizations,
e migration of these new
"ideas to real-time proof-of-concept repre-
sents the bridging of two vastly different

worlds of users, systems, and software

Easily Deploy MATLAB

methodologies.
Designs to Embedded, The RACE MATLAB Math Library
Multi-Node Computing enables M-file programs developed in
Systems The MathWorks’ powerful MATLAB

environment to be rapidly targeted to
RACE 1860 and PowerPC™ embedded

computer systems.

Automatically Convert
M-Files to C Code for
RACE Systems

Developed by Mercury Computer

Systems, a producer of high-performance

Increase Overall
Developer Productivity

embedded multicomputing systems, and
The MathWorks, a developer of high-
performance numeric computation soft-
ware, the RACE MATLAB Math Library
consists of the RACE Embedded
MATLAB Math Library and the RACE
Development MATLAB Math Library.

In conjunction with The MathWorks’
MATLAB Compiler, the embedded library
allows application execution on the i860-
and PowerPC-based RACE systems, and

the development library provides single-

ARice
— :

RACE® MATLAB®
Math Library

precision, MATLAB-compiled M-file exe-

cution on Sun™ Solaris™ workstations.

Mercury’s unique RACE MATLAB Math
Library offers a new way to reduce time-
to-prototype for high-performance digital
signal processing projects. It can eliminate
from weeks to months off project develop-
ment schedules, and eases the task of
going from workstation-based research to
a real-time, high-performance embedded

solution.

¢ The RACE Embedded MATLAB Math
Library allows MATLAB M-files to be
compiled and executed on multiproces-
sor RACE Series 1860 and PowerPC
compute nodes. This eliminates the
need to manually convert M-files to
C code.

* Once a MATLARB application is imple-
mented on the RACE system, life-cycle
support and functional evolution is
greatly facilitated. In the past, it was
not possible to avoid the costly and
unmanageable practice of having two
divergent code bases — one for the
researcher and one for the developer —
as code refinements and newer ideas
emerge from actual prototype data. By
using MATLAB as a “common
language,” researchers work with
development engineers on the real-time
system, saving significant time for fast-

evolving programs.

B

 Real-time implementations often require single-preci-
sion math. Until now, there was no way to use
MATLARB, which is a double-precision tool, to effec-
tively test the effect of reducing precision. The effects
of precision can force different algorithm strategies,
causing delays in obtaining a prototype system. The
RACE MATLAB Math Library minimizes recoding for
real-time prototyping and reveals effects of single-
precision at the research phase through the use of the
RACE MATLAB Development Math Library.

When used with multicomputing techniques, the
RACE MATLAB Math Library provides a higher-per-
formance platform to accelerate MATLAB project eval-
uation. While workstation implementations are limited
by the performance of a single workstation, the RACE
MATLAB Math Library provides for multiple proces-

sor implementations.

Targeting MATLAB M-Files to the
RACE Multicomputer

When used in conjunction with the MATLAB Compiler,
the RACE Embedded MATLAB Math Library allows
MATLAB M-files to compile
for a RACE i860 or
PowerPC compute environ-
ment. The resulting exe-

cutable is single-threaded.

The RACE MATLAB Math
Library is intended for early User added
RACE .
IPC calls

prototype systems transition-
ing from research to deploy-
ment. Improved perfor-
mance over workstations is
accomplished through a
multicomputer implementa-
tion. When moving from
prototype to deployment,
performance-critical regions
may be tuned by directly uti-
lizing Mercury's optimized
Scientific Algorithm Library

AR AT

(SAL) or by recoding to other processors such as the
SHARC® DSP.

Assuming that a “monolithic” M-file exists for an appli-
cation, the following steps are required to implement a
RACE multicomputer MATLAB program:

1. A multicomputing strategy is developed for partition-

ing processing across multiple processors.

2. Using the partitioning strategy as a guide, the mono-
lithic M-file is carefully studied and re-implemented in
MATLAB as multiple separate M-files that each represent

a piece of useful processing.

3. Each M-file is compiled with the MATLAB Compiler
to create a MATLAB “component” which is a C callable
function. For purposes of the programming model, the
developer can essentially think of these MATLAB compo-

nents as their own C callable SAL-like functions.

4. To achieve a multicomputer application, the developer

must implement the interprocess communication {IPC) to

User-Written
MATLAB Function
function.m

MATl:AB Compiler "dofpt*;

(changes
double
to float)

MATLAB
C Math
Library
matlab.h

libmatlb.fib

C Code File
function.c

. RACE MATLAB
Math Library
matlab.h
libmatlb.lib

replaces MATLABC

Standalone Application [Math Library

application.exe

provide data movement and synchronization to logically
interconnect these MATLAB components. For RACE
multicomputers, there are several choices for IPC, includ-
ing shared memory buffers with semaphores and

Mercury’s Parallel Application System (PAS™),

The PAS application comprises a high-performance set of
libraries which forms a complete programming environ-
ment for developing parallel applications in a distributed
memory multicomputer system while maintaining maxi-

mum hardware performance.

5. The application code is compiled and linked against
required libraries, one of which is the RACE Embedded
MATLAB Math Library, to create executables. The choice
of 1860 or PowerPC, and single or double precision is
made here by selecting the desired compiler and library
names. Launching and debugging of the application is
accomplished using standard RACE development tools
for C applications (see “Space-Time Adaptive Processing
Using the RACE® MATLAB® Math Library,” AN-5C-10).

The MATLAB M-files on RACE are subject to the limi-
tations of the MATLAB Compiler, such as the inability to
display graphics. Typically, output data is sent to the
development workstation or written to disk and displayed
with MATLAB executing on the workstation.

RACE MATLAB Math Library
Product Description -

The RACE Embedded MATLAB Math Library consists
of a user’s guide, detailed code examples, help-line sup-
port, and four libraries each for the i860 and PowerPC.
The RACE Development MATLAB Math Library consists
of two libraries for the Sun SPARC® workstation.

: m(t:hsmgrlfgupport .| Embedded | Development
Single-Precision X X
Double-Precision X X
Vectorized Single-Precision X
Vectorized Double-Precision X

56

NOTE: Due to processor architecture differences, dou-
ble-precision results may not match exactly between the
workstation, and i860 and PowerPC compute nodes. The
embedded optimized library vectorizes MATLAB routines
with routines from Mercury’s SAL for higher performance.
Since algorithm implementation methods can impact pre-
cision, both optimized and non-optimized libraries are

available to detect such influences.

RACE MATLAB Math Library

Product Example

To illustrate the power of the RACE MATLAB Math
Library, a fully documented example of space-time adap-
tive processing (STAP) radar is included in the product
(see “Space-Time Adaptive Processing Using the RACE®
MATLAB® Math Library,” AN-5C-10).

The original STAP M-file applies mathematical computa-
tions to radar data for ultimate target detection. Hand-
coded C routines distribute the processing among multiple
processors on the RACE target system by applying a PAS
multiprocessor master/slave model. The STAP Application
Example (see page 4) shows a graphical model of this
multicomputing adoption of a linear mathematical
MATLAB application.

MATLAB is a powerful tool for application development
in defense signal processing and diagnostic medical image
reconstruction. With the RACE MATLAB Math Library,
researchers and development engineers can speed the tran-

sition from the “drawing board” to the “product shelf.”

A A AT AT A A

Determine Add
Parallelization

Structure

Partition
MFile into
Composer

Decompose

Original
Application

MFile
Communicati

stap.m main.c Virtual

Processor- 1
main.c..
jamnull.m .
jomnuil.m
Use
PAS to
distribute

detect.m Shared

Processor 3

report.m

o

Interprocess

] Memo
for res:}f

Assign to
Processor
ion

Each Processor
gets 20 Azimuths

PPCCES

report

STAP Application Example

Order Information, for RACE MC/0S™ Version 4.x*

ltem
V1.1.0 Bundled - RACE MATLAB Math Libraryl)
V1.1.0 Embedded - RACE MATLAB Embedded Math Library
V1.1.0 Development - RACE MATLAB Development Math Library(2)
(1) Includes both Embedded and Development Library
@ Requires purchase of Embedded Library
*The RACE MATLAB Math Library is supported on MC/OS v4.2 and later

Compatibility with MATLAB Products
V1.1.0 MATLAB 5.2/1.2i860, PowerPC available now, SHARC n/a

=15, GOVERNMENT PRINTING OFFICE:

1999-310-079-81212

PARTNER

Part Number
810-07103
81007101
810-07102

Computer Systems, Inc.
MERCURY
The Ultimate Performance Machine

199 Rivemeck Road
Chelmsford, MA 01824-2820 U.S.A.

The MathWorks, Inc. is the leading developer and supplier of technical computing software worldwide. More than 400,000
technical professionals, educators, and students in more than 100 countries use The MathWorks' MATLAB® interactive
computational language, math, and visualization tool. Founded in 1984, The MathWorks is a privately held company located
in Natick, Massachusetts.

RACE and the RACE logo are registered trademarks, and MC/OS and PAS are trademarks of Mercury Computer Systems,

inc. MATLAB is a registered trademark of The MathWorks, Inc. Other products mentioned may be trademarks or registered trademarks of their respective holders. Mercury Computer Systems

978-256-1300 + Fax 978-256-3599
800-229-2006 * http://www.mc.com
NASDAQ: MRCY

believes this information is accurate as of its publication date and is not responsible for any inadvertent errors. The information contained herein is subject to change without notice.

Copyright © 1998 Mercury Gomputer Systems, Inc.

57

0S-5T-11

AFRL7IFYC 2
ATTN: RALPH KOHLER
26 ELECTRONIC PKWY
ROME NY 13441=4514

MERCURY COMPUTER SYSTEMS, INC 2
199 RIVERNECK. ROAD
CHELMSFORD MA 01824-2820"

AFRL/IFOIL 1
TECHNICAL LIBRARY
26 ELECTRONIC PXY.
ROME NY. 13441=4514

ATTENTION: DTIC=0CC 2
DEFENSE TECHNICAL INFO CENTER

8725 JOHN J. KINGMAN ROAD, STE 0944

FT." BELVOIR, VA 22060-6218

DEFENSE ADVANCED RESEARCH 1
PROJECTS AGENCY:

3707 NORTH FAIRFAX® DRIVE

ARLINGTON VA 22203=1714

ATTM: NAN PFRIMMER 1
IIT RESEARCH INSTITUTE

201 MILL ' ST.

ROME, NY 13440

AFIT ACADEMIC LIBRARY. 1
AFIT/LDR, 2950 P.STREET

AREA B, BLDE 642

NRIGHT~PATTERSON AFB OH 45433=77465

AFRL/MLME 1
2977 P STREET, STE 6
WRIGHT=PATTERSON AFB OH 45433=7739

AFRL/JHESC=TDC 1
2698 6 STREET, 8LDG 190
WRIGHT=PATTERSON AFB OH 45433~7604

ATTN: SMDC IM PL 1
US ARMY SPACE & MISSILE DEF CMD

P.0. B0OX: 1500

HUNTSVILLE AL 35807-3801

DL 1

e

TECHNICAL LIBRARY pO274(PL-TS5)
SPAWARSYSCEN

53560 HULL 5T.

SAN DIEGD CA 92152-5001

CDRs UYS ARMY AVIATION & MISSILE CMD
REDSTONE SCIENTIFIC INFORMATION (TR
ATTN: AMSAM=~RD=0B8=R, (DOCUMENTS)
REDSTONE ARSENAL: AL - 35898=5000

REPORT LIBRARY

MS P364

LOS- ALAMOS NATIONAL: LABORATORY
LOS ALAMOS NM B7545

ATTN:z D'BORAH HART
AVIATION BRANCH SVC 122.10
FOB10A, RM 931

800 INDEPENDENCE AVE, SW
WASHINGTON DC 20591

AFINLINSY.
102 HALL: BLVD, STE 315
SAN ANTONIO. TX 78243-7016

ATTN: XAROLA M. YDURISON
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE

PITTSBURGH PA 15213

USAF/AIR FORCE RESEARCH LABORATORY
| AFRL/VSDSA(LIRRARY=BLDG 1103)

5 WRIGHT DRIVE

HANSCOM AFB MA 01731=3004

ATTN: EILEEN LADUKE/D460
MITRE CORPORATION
202 BURLINGTOM RD
BEDFORD MA 01730

QUSDAPI/DTSA/DUTD

ATTN: PATRICK G. SULLIVAN, JR.
400 ARMY NAVY DRIVE

SUITE 300

ARLINGTON VA 22202

*Total Number of Copies is:
DL 2

_7—

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of information systems science and
technology for aerospaée command and control and its transition to air,
space, and ground systems to meet customer needs in the areas of Global
Awareness, Dynamic Planning and Execution, and Global Information
Exchange is the focus of this AF RL organization. The directorate’s areas
of investigation include a broad spectrum of information and fusion,
communication, collaborative environment and modeling and simulation,
defensive information warfare, and intelligent information systéms

technologies.

